Domain generalization aims to learn a prediction model on multi-domain source data such that the model can generalize to a target domain with unknown statistics. Most existing approaches have been developed under the assumption that the source data is well-balanced in terms of both domain and class. However, real-world training data collected with different composition biases often exhibits severe distribution gaps for domain and class, leading to substantial performance degradation. In this paper, we propose a self-balanced domain generalization framework that adaptively learns the weights of losses to alleviate the bias caused by different distributions of the multi-domain source data. The self-balanced scheme is based on an auxiliary reweighting network that iteratively updates the weight of loss conditioned on the domain and class information by leveraging balanced meta data. Experimental results demonstrate the effectiveness of our method overwhelming state-of-the-art works for domain generalization.


翻译:广域化的目的是学习多域源数据的预测模型,使该模型能够以未知的统计资料概括到目标领域,大多数现有办法是在以下假设下制定的:源数据在域和类上均匀;然而,以不同构成偏差收集的现实世界培训数据往往显示在域和类上存在严重的分布差距,导致显著性能退化。在本文件中,我们提出了一个自我平衡的域通用框架,以适应性的方式学习损失的权重,减轻多域源数据不同分布造成的偏差。自我平衡方案的基础是辅助重加权网络,利用平衡的元数据,迭接更新域和类信息中损失的权重。实验结果表明我们方法在域普遍化方面压倒一切的先进工作的有效性。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2020年3月17日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
相关论文
Arxiv
13+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2020年3月17日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员