Unlike the classical linear model, nonlinear generative models have been addressed sparsely in the literature. This work aims to bring attention to these models and their secrecy potential. To this end, we invoke the replica method to derive the asymptotic normalized cross entropy in an inverse probability problem whose generative model is described by a Gaussian random field with a generic covariance function. Our derivations further demonstrate the asymptotic statistical decoupling of Bayesian inference algorithms and specify the decoupled setting for a given nonlinear model. The replica solution depicts that strictly nonlinear models establish an all-or-nothing phase transition: There exists a critical load at which the optimal Bayesian inference changes from being perfect to an uncorrelated learning. This finding leads to design of a new secure coding scheme which achieves the secrecy capacity of the wiretap channel. This interesting result implies that strictly nonlinear generative models are perfectly secured without any secure coding. We justify this latter statement through the analysis of an illustrative model for perfectly secure and reliable inference.
翻译:与古典线性模型不同,非线性基因变异模型在文献中很少涉及。 这项工作旨在提请人们注意这些模型及其保密潜力。 为此,我们援引复制方法, 在一个反概率问题中得出无线性归正的交叉倍增, 基因变异模型是由高斯随机字段描述的, 带有通用共变函数。 我们的推论进一步证明了巴伊西亚引力算法的无线性统计脱钩, 并具体说明了给定的非线性模型的脱钩设置。 复制方案描述了严格非线性模型建立全无或全无的过渡阶段: 存在一种临界负荷, 最佳的巴伊斯猜想从完美到不相关学习的改变。 这一发现导致设计一个新的安全编码计划, 从而实现窃听频道的保密能力。 这个有趣的结果意味着, 完全非线性基因变异模型在没有任何安全的编码的情况下得到完全的保证。 我们通过分析一个说明性模型, 来证明后一种精确可靠和可靠的推导力。