This paper investigates the adaptive trajectory and communication scheduling design for an unmanned aerial vehicle (UAV) relaying random data traffic generated by ground nodes to a base station. The goal is to minimize the expected average communication delay to serve requests, subject to an average UAV mobility power constraint. It is shown that the problem can be cast as a semi-Markov decision process with a two-scale structure, which is optimized efficiently: in the outer decision, the UAV radial velocity for waiting phases and end radius for communication phases optimize the average long-term delay-power trade-off; given outer decisions, inner decisions greedily minimize the instantaneous delay-power cost, yielding the optimal angular velocity in waiting states, and the optimal relay strategy and UAV trajectory in communication states. A constrained particle swarm optimization algorithm is designed to optimize these trajectory problems, demonstrating 100x faster computational speeds than successive convex approximation methods. Simulations demonstrate that an intelligent adaptive design exploiting realistic UAV mobility features, such as helicopter translational lift, reduces the average communication delay and UAV mobility power consumption by 44% and 7%, respectively, with respect to an optimal hovering strategy and by 2% and 13%, respectively, with respect to a greedy delay minimization scheme.


翻译:本文件调查了无人驾驶飞行器(无人驾驶飞行器)通过地面节点向基地站提供随机数据传输到地面节点产生的随机数据流动的适应性轨迹和通信时间安排设计。目标是尽量减少预期平均通信延误,以满足请求,但以平均无人驾驶飞行器机动力限制为条件。文件显示,问题可以作为一个半马尔科夫决定过程,采用两尺度结构,优化为优化:在外部决定中,无人驾驶飞行器等待阶段和通信阶段终点半径的等待阶段的无人驾驶飞行器辐射速度和通信阶段终端半径优化平均长期延迟功率交换;根据外部决定,内部决定贪婪地将瞬时延迟功率成本降至最低,在等待状态中产生最佳角速度,以及通信状态中最佳中继战略和无人驾驶飞行器轨迹。限制粒子蒸汽优化算法的目的是优化这些轨迹问题,显示比连续的convex近似方法更快的100x计算速度。模拟显示,智能适应设计利用现实的无人驾驶飞行器移动性特征,如直升机翻译升能,将平均通信延迟和UAAV调动功率消耗率分别减少44%和7%和7%,同时尊重最佳水平战略和最短度计划。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员