This paper discusses a stylized communications problem where one wishes to transmit a real-valued signal x in R^n (a block of n pieces of information) to a remote receiver. We ask whether it is possible to transmit this information reliably when a fraction of the transmitted codeword is corrupted by arbitrary gross errors, and when in addition, all the entries of the codeword are contaminated by smaller errors (e.g. quantization errors). We show that if one encodes the information as Ax where A is a suitable m by n coding matrix (m >= n), there are two decoding schemes that allow the recovery of the block of n pieces of information x with nearly the same accuracy as if no gross errors occur upon transmission (or equivalently as if one has an oracle supplying perfect information about the sites and amplitudes of the gross errors). Moreover, both decoding strategies are very concrete and only involve solving simple convex optimization programs, either a linear program or a second-order cone program. We complement our study with numerical simulations showing that the encoder/decoder pair performs remarkably well.
翻译:本文讨论一个标准化的通信问题, 即人们希望向远程接收器发送真实值的 R ⁇ n 信号 x (n项信息块块) 。 我们问, 当传输的代码片段被任意严重错误腐蚀时, 并且当编码词的所有条目都受到小错误( 例如量化错误) 的污染时, 是否有可能可靠地传输这些信息。 我们显示, 如果将信息编码为 Ax, A 是 适合 m 的 n 编码矩阵 ( m ⁇ ⁇ n), 则有两种解码方案, 使得能够以几乎与传输时未发生严重错误( 或与 提供关于 站点的完美信息或 总错误的振荡等同) 的精确度来恢复 n 信息块 。 此外, 解码策略都非常具体, 只涉及解决简单的 convex 优化程序, 要么是线性程序, 要么是二级调控程序。 我们用数字模拟来补充我们的研究, 显示 encoder/ decoder 配对的运行得非常出色。