We improve automatic correction of grammatical, orthographic, and collocation errors in text using a multilayer convolutional encoder-decoder neural network. The network is initialized with embeddings that make use of character N-gram information to better suit this task. When evaluated on common benchmark test data sets (CoNLL-2014 and JFLEG), our model substantially outperforms all prior neural approaches on this task as well as strong statistical machine translation-based systems with neural and task-specific features trained on the same data. Our analysis shows the superiority of convolutional neural networks over recurrent neural networks such as long short-term memory (LSTM) networks in capturing the local context via attention, and thereby improving the coverage in correcting grammatical errors. By ensembling multiple models, and incorporating an N-gram language model and edit features via rescoring, our novel method becomes the first neural approach to outperform the current state-of-the-art statistical machine translation-based approach, both in terms of grammaticality and fluency.
翻译:我们利用多层进化编码器-解码器神经网络,改进了文本中的语法、正文和合用差错的自动校正。网络的初始化是嵌入,这些嵌入使用字符N克信息,以更好地适应这项任务。在对通用基准测试数据集(ConNLLL-2014和JFLEG)进行评估时,我们的模型大大优于所有先前关于这项任务的神经方法,以及强大的基于统计的机器翻译系统,这些系统具有同一数据方面的神经和任务特点。我们的分析显示,在通过注意力捕捉本地环境从而改进校正语法错误覆盖面方面,共进神经网络优于长期短期内存(LSTM)网络等经常性神经网络。通过聚合多个模型,并纳入N-gram语言模型和通过重新校正功能,我们的新方法成为第一个超越当前基于统计机的状态翻译方法的神经方法,在语法和流频度方面都是如此。