We combine two of the most popular approaches to automated Grammatical Error Correction (GEC): GEC based on Statistical Machine Translation (SMT) and GEC based on Neural Machine Translation (NMT). The hybrid system achieves new state-of-the-art results on the CoNLL-2014 and JFLEG benchmarks. This GEC system preserves the accuracy of SMT output and, at the same time, generates more fluent sentences as it typical for NMT. Our analysis shows that the created systems are closer to reaching human-level performance than any other GEC system reported so far.
翻译:我们结合了两种最受欢迎的自动表面错误校正方法:基于统计机器翻译(SMT)的GEC和基于神经机器翻译(NMT)的GEC。混合系统在CONLL-2014和JFLEG基准上取得了新的最新成果。这一GEC系统保持SMT产出的准确性,同时产生比NMT典型的更流利的句子。我们的分析表明,所创建的系统比迄今为止所报告的任何其他GEC系统都更接近于达到人类水平的业绩。