Taobao Search consists of two phases: the retrieval phase and the ranking phase. Given a user query, the retrieval phase returns a subset of candidate products for the following ranking phase. Recently, the paradigm of pre-training and fine-tuning has shown its potential in incorporating visual clues into retrieval tasks. In this paper, we focus on solving the problem of text-to-multimodal retrieval in Taobao Search. We consider that users' attention on titles or images varies on products. Hence, we propose a novel Modal Adaptation module for cross-modal fusion, which helps assigns appropriate weights on texts and images across products. Furthermore, in e-commerce search, user queries tend to be brief and thus lead to significant semantic imbalance between user queries and product titles. Therefore, we design a separate text encoder and a Keyword Enhancement mechanism to enrich the query representations and improve text-to-multimodal matching. To this end, we present a novel vision-language (V+L) pre-training methods to exploit the multimodal information of (user query, product title, product image). Extensive experiments demonstrate that our retrieval-specific pre-training model (referred to as MAKE) outperforms existing V+L pre-training methods on the text-to-multimodal retrieval task. MAKE has been deployed online and brings major improvements on the retrieval system of Taobao Search.


翻译:Taobao 搜索由两个阶段组成: 检索阶段和排名阶段。 用户询问后, 检索阶段返回了下一个排名阶段的一组候选产品。 最近, 培训前和微调的范例展示了将视觉线索纳入检索任务中的潜力。 在本文中, 我们侧重于解决在道保搜索中文本到多式检索的问题。 我们认为用户对标题或图像的关注因产品而异。 因此, 我们为跨模式融合提出了一个新的模式适应模块, 这有助于对文本和图像进行适当的加权。 此外, 在电子商务搜索中, 用户询问往往很简短, 从而导致用户查询和产品标题之间的语义不平衡。 因此, 我们设计了一个单独的文本编码和关键词“加强”机制, 以丰富查询表达方式和改进文本到多式匹配。 为此, 我们提出了一个新的愿景语言( V+L) 预培训方法, 以利用( 用户查询、 产品标题、 产品图像) 的多式联运信息。 此外, 在电子商业搜索中, 用户询问往往很简短, 从而导致用户查询和产品标题之间的语义严重不平衡。 因此, 我们的检索前系统前的检索模式已经将主要任务升级模式带到了VBATO 。

0
下载
关闭预览

相关内容

淘宝网( Taobao,口号:淘!我喜欢。)是全球最大的网络零售商圈,致力打造全球领先网络售卖平台,由阿里巴巴集团在2003年5月10日投资创立。淘宝网现在业务跨越C2C(个人对个人)、B2C(商家对个人)、购物搜索三大部分。
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Language Models Can Teach Themselves to Program Better
Arxiv
0+阅读 · 2023年4月12日
Robust Neural Architecture Search
Arxiv
0+阅读 · 2023年4月10日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Language Models Can Teach Themselves to Program Better
Arxiv
0+阅读 · 2023年4月12日
Robust Neural Architecture Search
Arxiv
0+阅读 · 2023年4月10日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
12+阅读 · 2018年1月11日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员