Dialog State Tracking (DST), an integral part of modern dialog systems, aims to track user preferences and constraints (slots) in task-oriented dialogs. In real-world settings with constantly changing services, DST systems must generalize to new domains and unseen slot types. Existing methods for DST do not generalize well to new slot names and many require known ontologies of slot types and values for inference. We introduce a novel ontology-free framework that supports natural language queries for unseen constraints and slots in multi-domain task-oriented dialogs. Our approach is based on generative question-answering using a conditional language model pre-trained on substantive English sentences. Our model improves joint goal accuracy in zero-shot domain adaptation settings by up to 9% (absolute) over the previous state-of-the-art on the MultiWOZ 2.1 dataset.
翻译:作为现代对话系统的一个组成部分,“对话状态跟踪”(DST)旨在跟踪任务导向对话中的用户偏好和限制(缩放)情况。在服务不断变化的现实世界环境中,DST系统必须推广到新的领域和不可见的空档类型。DST的现有方法没有很好地推广到新的空档名称,许多方法需要已知的空档类型和数值来推断。我们引入了一个无本科学的新框架,支持在多领域任务导向对话中以自然语言查询看不见的制约和空档。我们的方法是基于使用有条件的语言模型进行基因化问题解答,对实质性英语句进行预先培训。我们的模型使零光域适应设置的共同目标精确度比以前关于“多WOZ 2.1”数据集的艺术状态提高了9%(绝对)。