We show that the task of question answering (QA) can significantly benefit from the transfer learning of models trained on a different large, fine-grained QA dataset. We achieve the state of the art in two well-studied QA datasets, WikiQA and SemEval-2016 (Task 3A), through a basic transfer learning technique from SQuAD. For WikiQA, our model outperforms the previous best model by more than 8%. We demonstrate that finer supervision provides better guidance for learning lexical and syntactic information than coarser supervision, through quantitative results and visual analysis. We also show that a similar transfer learning procedure achieves the state of the art on an entailment task.


翻译:我们显示,问答任务可以大大受益于在不同的大型精细分类的质量控制数据集中培训模型的转让学习。我们通过SQUA的基本转移学习技术,在两个经过良好研究的质量控制数据集(WikiQA和SemEval-2016 (Task 3A))中实现了最新水平。对于WikiQA来说,我们的模型比先前的最佳模型高出8%以上。我们证明,比粗略的监管,细微的监督为学习词汇和综合信息提供了更好的指导。我们还表明,类似的转让学习程序在承担任务方面达到了最新水平。

3
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
3+阅读 · 2018年11月29日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
6+阅读 · 2018年4月21日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Top
微信扫码咨询专知VIP会员