视频来自油管up主 Yannic Kilcher ,放了一份在B站,带自动生成的字幕,感兴趣的同学可以在B站观看,点击“阅读原文”可直达视频链接:
https://www.bilibili.com/video/BV1Wp4y1D7qw
OUTLINE:
0:00 - Intro & Overview
1:20 - Language Models
2:45 - Language Modeling Datasets
3:20 - Model Size
5:35 - Transformer Models
7:25 - Fine Tuning
10:15 - In-Context Learning
17:15 - Start of Experimental Results
19:10 - Question Answering
23:10 - What I think is happening
28:50 - Translation
31:30 - Winograd Schemes
33:00 - Commonsense Reasoning
37:00 - Reading Comprehension
37:30 - SuperGLUE
40:40 - NLI
41:40 - Arithmetic Expressions
48:30 - Word Unscrambling
50:30 - SAT Analogies
52:10 - News Article Generation
58:10 - Made-up Words
1:01:10 - Training Set Contamination
1:03:10 - Task Examples
https://arxiv.org/abs/2005.14165
https://github.com/openai/gpt-3
推荐阅读
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用
太赞了!Springer面向公众开放电子书籍,附65本数学、编程、机器学习、深度学习、数据挖掘、数据科学等书籍链接及打包下载
数学之美中盛赞的 Michael Collins 教授,他的NLP课程要不要收藏?
模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。