We study black-box model stealing attacks where the attacker can query a machine learning model only through publicly available APIs. Specifically, our aim is to design a black-box model extraction attack that uses minimal number of queries to create an informative and distributionally equivalent replica of the target model. First, we define distributionally equivalent and max-information model extraction attacks. Then, we reduce both the attacks into a variational optimisation problem. The attacker solves this problem to select the most informative queries that simultaneously maximise the entropy and reduce the mismatch between the target and the stolen models. This leads us to an active sampling-based query selection algorithm, Marich. We evaluate Marich on different text and image data sets, and different models, including BERT and ResNet18. Marich is able to extract models that achieve $69-96\%$ of true model's accuracy and uses $1,070 - 6,950$ samples from the publicly available query datasets, which are different from the private training datasets. Models extracted by Marich yield prediction distributions, which are $\sim2-4\times$ closer to the target's distribution in comparison to the existing active sampling-based algorithms. The extracted models also lead to $85-95\%$ accuracy under membership inference attacks. Experimental results validate that Marich is query-efficient, and also capable of performing task-accurate, high-fidelity, and informative model extraction.


翻译:我们研究黑箱模式偷窃攻击,攻击者只能通过公开提供的API来查询机器学习模式。 具体地说, 我们的目标是设计黑箱模式抽取攻击, 使用最少的查询数量来创建信息化和分布等效的目标模型复制。 首先, 我们定义分布等值和最大信息模式抽取攻击。 然后, 我们将攻击分为一个变式优化问题。 攻击者解决问题, 选择信息最丰富的查询, 同时最大化导体, 减少目标与被盗模型之间的不匹配。 这导致我们找到一个以抽样为基础的主动查询选择算法, Marich。 我们对不同的文本和图像数据集以及不同模型( 包括 BERT 和 ResNet18) 进行评估。 马里希能够提取模型, 使真实模型准确性达到69- 960- 6 950美元, 从公开提供的查询数据集中提取样本, 这与私人培训数据集不同。 由Matrich 收益预测发行的模型, 也是以Sim2-4- 4-time为基的抽样选择算算法, 与目标的精准性攻击的精确度比例对比。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员