This paper investigates the feasibility of learning good representation space with unlabeled client data in the federated scenario. Existing works trivially inherit the supervised federated learning methods, which does not apply to the model heterogeneity and has the potential risk of privacy exposure. To tackle the problems above, we first identify that self-supervised contrastive local training is more robust against the non-i.i.d.-ness than the traditional supervised learning paradigm. Then we propose a novel federated self-supervised contrastive learning framework FLESD that supports architecture-agnostic local training and communication-efficient global aggregation. At each round of communication, the server first gathers a fraction of the clients' inferred similarity matrices on a public dataset. Then FLESD ensembles the similarity matrices and trains the global model via similarity distillation. We verify the effectiveness of our proposed framework by a series of empirical experiments and show that FLESD has three main advantages over the existing methods: it handles the model heterogeneity, is less prone to privacy leak, and is more communication-efficient. We will release the code of this paper in the future.


翻译:本文探讨在联盟式假设情景中以未贴标签的客户数据学习良好代表空间的可行性。 现有的工作微乎其微地继承了受监督的联邦学习方法, 这种方法不适用于模型异质性, 并具有潜在的隐私暴露风险。 为了解决上述问题, 我们首先发现, 自我监督的对比性本地培训比传统受监督的学习模式更加有力。 我们通过一系列经验实验来验证我们提议的框架的有效性, 并表明 FLESD比现有方法有三大优势: 它处理模型异质性, 比较不易发生隐私泄漏, 并且通信效率更高。 我们将在将来发布该文件的代码 。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年12月8日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员