Lead time data is compositional data found frequently in the hospitality industry. Hospitality businesses earn fees each day, however these fees cannot be recognized until later. For business purposes, it is important to understand and forecast the distribution of future fees for the allocation of resources, for business planning, and for staffing. Motivated by 5 years of daily fees data, we propose a new class of Bayesian time series models, a Bayesian Dirichlet Auto-Regressive Moving Average (B-DARMA) model for compositional time series, modeling the proportion of future fees that will be recognized in 11 consecutive 30 day windows and 1 last consecutive 35 day window. Each day's compositional datum is modeled as Dirichlet distributed given the mean and a scale parameter. The mean is modeled with a Vector Autoregressive Moving Average process after transforming with an additive log ratio link function and depends on previous compositional data, previous compositional parameters and daily covariates. The B-DARMA model offers solutions to data analyses of large compositional vectors and short or long time series, offers efficiency gains through choice of priors, provides interpretable parameters for inference, and makes reasonable forecasts.


翻译:领先时间数据是酒店行业中经常遇到的组成数据。酒店企业每天都会收取费用,但这些费用必须延迟才能确认收入。为了分配资源,制定商业计划和人力安排,理解和预测未来费用的分布非常重要。在对过去5年的日费用数据进行研究后,我们提出了一类新的贝叶斯时间序列模型——泊松狄利克雷自回归移动平均模型,用于建模未来连续11个30天窗口和1个最后连续35天窗口中将认可的未来费用的比例数据。每天的组成数据都有一个狄利克雷分布,给定均值和比例尺参数。均值通过矢量自回归移动平均过程进行建模,在添加对数比率链接函数进行转换后依赖于先前的组成数据、先前的组成参数和日常协变量。该泊松狄利克雷自回归移动平均模型提供了解决大组成向量和短或长时间序列的数据分析问题的方案,通过选择先验提供效率增益,为推理提供可解释参数,并可作出合理的预测。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员