Cloud, fog, and edge computing integration with future mobile Internet-of-Things (IoT) devices and related applications in 5G/6G networks will become more practical in the coming years. Containers became the de facto virtualization technique that replaced Virtual Memory (VM). Mobile IoT applications, e.g., intelligent transportation and augmented reality, incorporating fog-edge, have increased the demand for a millisecond-scale response and processing time. Edge Computing reduces remote network traffic and latency. These services must run on edge nodes that are physically close to devices. However, classical migration techniques may not meet the requirements of future mission-critical IoT applications. IoT mobile devices have limited resources for running multiple services, and client-server latency worsens when fog-edge services must migrate to maintain proximity in light of device mobility. This study analyzes the performance of the MiGrror migration method and the pre-copy live migration method when the migration of multiple VMs/containers is considered. This paper presents mathematical models for the stated methods and provides migration guidelines and comparisons for services to be implemented as multiple containers, as in microservice-based environments. Experiments demonstrate that MiGrror outperforms the pre-copy technique and, unlike conventional live migrations, can maintain less than 10 milliseconds of downtime and reduce migration time with a minimal bandwidth overhead. The results show that MiGrror can improve service continuity and availability for users. Most significant is that the model can use average and non-average values for different parameters during migration to achieve improved and more accurate results, while other research typically only uses average values. This paper shows that using only average parameter values in migration can lead to inaccurate results.


翻译:暂无翻译

2
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员