Non-Euclidean data that are indexed with a scalar predictor such as time are increasingly encountered in data applications, while statistical methodology and theory for such random objects are not well developed yet. To address the need for new methodology in this area, we develop a total variation regularization technique for nonparametric Fr\'echet regression, which refers to a regression setting where a response residing in a metric space is paired with a scalar predictor and the target is a conditional Fr\'echet mean. Specifically, we seek to approximate an unknown metric-space valued function by an estimator that minimizes the Fr\'echet version of least squares and at the same time has small total variation, appropriately defined for metric-space valued objects. We show that the resulting estimator is representable by a piece-wise constant function and establish the minimax convergence rate of the proposed estimator for metric data objects that reside in Hadamard spaces. We illustrate the numerical performance of the proposed method for both simulated and real data, including metric spaces of symmetric positive-definite matrices with the affine-invariant distance, of probability distributions on the real line with the Wasserstein distance, and of phylogenetic trees with the Billera--Holmes--Vogtmann metric.


翻译:在数据应用中,随着诸如时间等卡路里预测值的指数化的非欧- 欧- 克利德纳数据在数据应用中日益遇到,而关于此类随机天体的统计方法和理论则尚未完善。为了应对这一领域新方法的需要,我们开发了非参数Fr\'echet回归的全变校正技术,该技术是指一个回归环境,即位于一个公尺空间的响应与一个卡路里预测器相匹配,而且目标是有条件的Fr\'echet值。具体地说,我们试图将一个未知的多空间价值功能接近于一个测量器,该测量器将最小方形的Fr\'echet版本最小化,而与此同时,这种随机天体的统计器总变数很小,对多米- 值值对象进行了适当定义。我们表明,由此得出的估计值可被一个小的常数函数所代表,并建立了位于哈达马德空间的计量器物体的拟议估计值最小的峰- 。我们展示了模拟和真实数据的拟议方法的数值性性性性,包括测量正- 确定性正- 定值矩阵的测量- 矩阵的测量- 直径距离,与瓦- 等- 等- 等- 等- 等- 等- 等- 等- 等- 等- 等- 等距 等- 等- 等- 等- 等- 等 等 等- 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
tf.GradientTape 详解
TensorFlow
120+阅读 · 2020年2月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
tf.GradientTape 详解
TensorFlow
120+阅读 · 2020年2月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员