Non-Euclidean data that are indexed with a scalar predictor such as time are increasingly encountered in data applications, while statistical methodology and theory for such random objects are not well developed yet. To address the need for new methodology in this area, we develop a total variation regularization technique for nonparametric Fr\'echet regression, which refers to a regression setting where a response residing in a metric space is paired with a scalar predictor and the target is a conditional Fr\'echet mean. Specifically, we seek to approximate an unknown metric-space valued function by an estimator that minimizes the Fr\'echet version of least squares and at the same time has small total variation, appropriately defined for metric-space valued objects. We show that the resulting estimator is representable by a piece-wise constant function and establish the minimax convergence rate of the proposed estimator for metric data objects that reside in Hadamard spaces. We illustrate the numerical performance of the proposed method for both simulated and real data, including metric spaces of symmetric positive-definite matrices with the affine-invariant distance, of probability distributions on the real line with the Wasserstein distance, and of phylogenetic trees with the Billera--Holmes--Vogtmann metric.
翻译:在数据应用中,随着诸如时间等卡路里预测值的指数化的非欧- 欧- 克利德纳数据在数据应用中日益遇到,而关于此类随机天体的统计方法和理论则尚未完善。为了应对这一领域新方法的需要,我们开发了非参数Fr\'echet回归的全变校正技术,该技术是指一个回归环境,即位于一个公尺空间的响应与一个卡路里预测器相匹配,而且目标是有条件的Fr\'echet值。具体地说,我们试图将一个未知的多空间价值功能接近于一个测量器,该测量器将最小方形的Fr\'echet版本最小化,而与此同时,这种随机天体的统计器总变数很小,对多米- 值值对象进行了适当定义。我们表明,由此得出的估计值可被一个小的常数函数所代表,并建立了位于哈达马德空间的计量器物体的拟议估计值最小的峰- 。我们展示了模拟和真实数据的拟议方法的数值性性性性,包括测量正- 确定性正- 定值矩阵的测量- 矩阵的测量- 直径距离,与瓦- 等- 等- 等- 等- 等- 等- 等- 等- 等- 等- 等- 等距 等- 等- 等- 等- 等- 等 等 等- 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等