This paper develops a new integrated ball (pseudo)metric which provides an intermediary between a chosen starting (pseudo)metric d and the L_p distance in general function spaces. Selecting d as the Hausdorff or Fr\'echet distances, we introduce integrated shape-sensitive versions of these supremum-based metrics. The new metrics allow for finer analyses in functional settings, not attainable applying the non-integrated versions directly. Moreover, convergent discrete approximations make computations feasible in practice.
翻译:本文开发了新的集成球( 假球) 度量法, 它为所选的起始( 假球) 度量 d 和一般功能空间的 L_ p 距离提供介质。 选择 d 为 Hausdorff 或 Fr\\' echet 距离, 我们引入了这些基于 supremum 的量度法的集成体感化版本。 新的度量法允许对功能环境进行更精确的分析, 无法直接应用非集成版本 。 此外, 趋同的离散近光线使得计算在实践中可行 。