When studying treatment effects in multilevel studies, investigators commonly use (semi-)parametric estimators, which make strong parametric assumptions about the outcome, the treatment, and/or the correlation between individuals. We propose two nonparametric, doubly robust, asymptotically Normal estimators of treatment effects that do not make such assumptions. The first estimator is an extension of the cross-fitting estimator applied to clustered settings. The second estimator is a new estimator that uses conditional propensity scores and an outcome covariance model to improve efficiency. We apply our estimators in simulation and empirical studies and find that they consistently obtain the smallest standard errors.


翻译:在研究多层次研究的治疗效果时,调查人员通常使用(半)参数参数估测器,这些估测器对结果、治疗和(或)个人之间的关系作出强烈的参数假设。我们建议使用两个非对称的、双重强健的、无常态的、不作这种假设的治疗效果估计器。第一个估测器是适用于集群环境的交叉估计值的延伸。第二个估测器是一个新的估测器,使用有条件的倾向性分数和结果共变模型来提高效率。我们在模拟和经验研究中应用我们的估测器,发现他们一贯获得最小的标准差错。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
52+阅读 · 2020年9月7日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年6月13日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年6月13日
Top
微信扫码咨询专知VIP会员