The task of event extraction (EE) aims to find the events and event-related argument information from the text and represent them in a structured format. Most previous works try to solve the problem by separately identifying multiple substructures and aggregating them to get the complete event structure. The problem with the methods is that it fails to identify all the interdependencies among the event participants (event-triggers, arguments, and roles). In this paper, we represent each event record in a unique tuple format that contains trigger phrase, trigger type, argument phrase, and corresponding role information. Our proposed pointer network-based encoder-decoder model generates an event tuple in each time step by exploiting the interactions among event participants and presenting a truly end-to-end solution to the EE task. We evaluate our model on the ACE2005 dataset, and experimental results demonstrate the effectiveness of our model by achieving competitive performance compared to the state-of-the-art methods.
翻译:事件提取任务( EE) 旨在从文本中查找事件和事件相关论证信息,并以结构化格式代表它们。大多数先前的工作都试图通过分别确定多个子结构并将其汇集以获得完整的事件结构来解决问题。方法问题在于它未能确定事件参与者之间的所有相互依存关系(事件触发、争论和角色)。在本文中,我们以独特的图例格式代表每个事件记录,其中含有触发词、触发类型、参数短语和相应的角色信息。我们提议的基于点点网络的编码-解码模型通过利用事件参与者之间的互动和为 EE任务提出真正的端到端解决方案,在每一个时间步骤中产生一个事件图例。我们评估了我们关于ACE2005数据集的模型,实验结果通过实现与最新方法的竞争性性能,显示了我们模型的有效性。