This paper discusses a data-driven, empirically-based framework to make algorithmic decisions or recommendations without expert knowledge. We improve the performance of two algorithmic case studies: the selection of a pivot rule for the Simplex method and the selection of an all-pair shortest paths algorithm. We train machine learning methods to select the optimal algorithm for given data without human expert opinion. We use two types of techniques, neural networks and boosted decision trees. We concluded, based on our experiments, that: 1) Our selection framework recommends various pivot rules that improve overall total performance over just using a fixed default pivot rule. Over many years experts identified steepest-edge pivot rule as a favorite pivot rule. Our data analysis corroborates that the number of iterations by steepest-edge is no more than 4 percent more than the optimal selection which corroborates human expert knowledge, but this time the knowledge was obtained using machine learning. Here our recommendation system is best when using gradient boosted trees. 2) For the all-pairs shortest path problem, the models trained made a large improvement and our selection is on average .07 percent away from the optimal choice. The conclusions do not seem to be affected by the machine learning method we used. We tried to make a parallel analysis of both algorithmic problems, but it is clear that there are intrinsic differences. For example, in the all-pairs shortest path problem the graph density is a reasonable predictor, but there is no analogous single parameter for decisions in the Simplex method.


翻译:本文讨论一个数据驱动的、以经验为基础的框架,以在没有专家知识的情况下作出算法决定或提出建议。 我们改进了两个算法案例研究的绩效:选择Flaimx方法的轴线规则,选择全帕最短路径算法。 我们训练机器学习方法,为特定数据选择最佳算法,而没有人类专家意见。 我们使用两种技术, 神经网络和增强决策树。 我们根据实验得出结论:(1) 我们的筛选框架建议了各种轴线规则,这些规则在使用固定的默认轴线规则的情况下提高了总体性能。 多年来,专家将最顶尖的轴线规则确定为最喜爱的轴线规则。 我们的数据分析证实, 最深处的轴线数不超过最佳选择的4%, 以证实人类专家的知识, 但这次知识是通过机器学习获得的。 我们的建议系统在使用梯度推树的时候是最好的。 (2) 对于最短路径的问题,经过训练的模型做了很大的改进, 我们的选择是平均的。 07 % 选择的方法不是最精确的方法, 我们使用最接近的直径的方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
45+阅读 · 2019年12月20日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年11月20日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
45+阅读 · 2019年12月20日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Top
微信扫码咨询专知VIP会员