Optimization problems are crucial in artificial intelligence. Optimization algorithms are generally used to adjust the performance of artificial intelligence models to minimize the error of mapping inputs to outputs. Current evaluation methods on optimization algorithms generally consider the performance in terms of quality. However, not all optimization algorithms for all test cases are evaluated equal from quality, the computation time should be also considered for optimization tasks. In this paper, we investigate the quality and computation time of optimization algorithms in optimization problems, instead of the one-for-all evaluation of quality. We select the well-known optimization algorithms (Bayesian optimization and evolutionary algorithms) and evaluate them on the benchmark test functions in terms of quality and computation time. The results show that BO is suitable to be applied in the optimization tasks that are needed to obtain desired quality in the limited function evaluations, and the EAs are suitable to search the optimal of the tasks that are allowed to find the optimal solution with enough function evaluations. This paper provides the recommendation to select suitable optimization algorithms for optimization problems with different numbers of function evaluations, which contributes to the efficiency that obtains the desired quality with less computation time for optimization problems.


翻译:优化问题在人工智能中至关重要。优化算法通常用于调整人工智能模型的性能,以尽量减少对产出的映射输入的错误。当前优化算法的评价方法一般从质量角度考虑性能。然而,并非所有测试案例的优化算法都与质量相等,计算时间也应考虑优化任务。本文调查优化算法在优化问题中的质量和计算时间,而不是对质量的一对一评价。我们选择了众所周知的优化算法(巴伊西亚优化和演化算法),并根据质量和计算时间评估它们的基准测试功能。结果显示,在优化任务中适用BO是合适的,而优化任务是获得有限功能评估所需质量的,而EA是合适的,可以寻找最佳任务,找到最佳解决方案,进行足够的功能评估。本文建议选择适当的优化算法,以不同数量的职能评估为优化问题选择适当的优化算法,这有助于提高效率,以较少时间计算优化问题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员