We prove an \Omega(n/k+k) communication lower bound on (k-1)-round distributional complexity of the k-step pointer chasing problem under uniform input distribution, improving the \Omega(n/k - k log n) lower bound due to Yehudayoff (Combinatorics Probability and Computing, 2020). Our lower bound almost matches the upper bound of O(n/k + k) communication by Nisan and Wigderson (STOC 91). As part of our approach, we put forth gadgetless lifting, a new framework that lifts lower bounds for a family of restricted protocols into lower bounds for general protocols. A key step in gadgetless lifting is choosing the appropriate definition of restricted protocols. In this paper, our definition of restricted protocols is inspired by the structure-vs-pseudorandomness decomposition by G\"o\"os, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24). Previously, round-communication trade-offs were mainly obtained by round elimination and information complexity. Both methods have some barriers in some situations, and we believe gadgetless lifting could potentially address these barriers.
翻译:暂无翻译