In this paper, we consider the problem of reconstructing trees from traces in the tree edit distance model. Previous work by Davies et al. (2019) analyzed special cases of reconstructing labeled trees. In this work, we significantly expand our understanding of this problem by giving general results in the case of arbitrary trees. Namely, we give: a reduction from the tree trace reconstruction problem to the more classical string reconstruction problem when the tree topology is known, a lower bound for learning arbitrary tree topologies, and a general algorithm for learning the topology of any tree using techniques of Nazarov and Peres (2017). We conclude by discussing why arbitrary trees require exponentially many samples under the left propagation model.


翻译:在本文中,我们考虑了从树木编辑距离模型的痕迹中重建树木的问题。Davies等人(2019年)以前的工作分析了重建有标签树木的特殊案例。在这项工作中,我们通过在任意树木方面提供一般结果,极大地扩大了对这一问题的理解。也就是说,我们给出:在已知树木结构学的情况下,将树木的痕迹重建问题从树木的痕迹重建问题减少到比较古典的线条重建问题,学习任意树木结构学的起点较低,以及使用Nazarov和Peres(2017年)技术学习任何树的地形学的一般算法。我们最后通过讨论任意树木在左侧传播模式下需要大量样品的原因。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
专知会员服务
142+阅读 · 2020年5月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员