We present a novel data-driven strategy to choose the hyperparameter $k$ in the $k$-NN regression estimator. We treat the problem of choosing the hyperparameter as an iterative procedure (over $k$) and propose using an easily implemented in practice strategy based on the idea of early stopping and the minimum discrepancy principle. This model selection strategy is proven to be minimax-optimal, under the fixed-design assumption on covariates, over some smoothness function classes, for instance, the Lipschitz functions class on a bounded domain. The novel method often improves statistical performance on artificial and real-world data sets in comparison to other model selection strategies, such as the Hold-out method and 5-fold cross-validation. The novelty of the strategy comes from reducing the computational time of the model selection procedure while preserving the statistical (minimax) optimality of the resulting estimator. More precisely, given a sample of size $n$, assuming that the nearest neighbors are already precomputed, if one should choose $k$ among $\left\{ 1, \ldots, n \right\}$, the strategy reduces the computational time of the generalized cross-validation or Akaike's AIC criteria from $\mathcal{O}\left( n^3 \right)$ to $\mathcal{O}\left( n^2 (n - k) \right)$, where $k$ is the proposed (minimum discrepancy principle) value of the nearest neighbors. Code for the simulations is provided at https://github.com/YaroslavAveryanov/Minimum-discrepancy-principle-for-choosing-k.
翻译:我们提出了一个新颖的数据驱动策略, 用于在 $k$- NN 回归验证器中选择超参数 $k$ 。 我们把选择超参数的问题当作一个迭代程序( 超过 $k$ ), 并提议根据早期停止的概念和最小差异原则, 在实际操作中使用一个简单实施的战略。 这个模式选择策略被证明是小型最大最佳的, 在固定设计假设 COVidates 下, 超越某些平滑功能类别, 比如, Lipschitz 函数类在约束域上运行。 新方法通常会提高人造和真实世界数据集的统计性能, 与其他模式选择战略相比, 比如“ 暂停” 和“ 5倍交叉校验” 。 战略的新颖性在于缩短模型选择程序的计算时间, 同时保存由此得出的估算值的统计( 最小值) 最佳性。 更精确地说, 假设最近的邻居已经提前投入了, 如果在 $\ 美元 美元 美元 ( rick) 中选择 美元 ( ral___ ral3) ral_ ral_ ral_ or_ or_ or_ral_ orma) ormax) 战略, 。