In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. 2018 Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling rate, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. The proposed approach requires to use a pilot estimator to correct biases of un-weighted estimators. We further show that even if the pilot estimator is inconsistent, the resulting estimators are still consistent and asymptotically normal if the model is correctly specified.


翻译:在本文中,我们根据Wang 等人(Wang 等人( 2018年) 开发的最佳次抽样概率,提出更好的后勤回归估计方法,根据子抽样,提出更好的后勤回归估计方法。 有趣的是, 吸附分布还表明, Poisson 子抽样结果和数字结果都表明,新的估算值的估算效率较高。 我们还根据Poisson 子抽样得出一种新的算法,这不需要同时估算最佳的子抽样概率。 当可用的随机访问存储存储器不足以维持全部数据时, 这样做在计算上是有利的。 有趣的是, 吸附分布还表明, Poisson 子抽样结果还表明, 如果取样率、 子抽样大小与全部数据样本大小的比率不趋同, 则Poisson 子抽样结果将产生更有效的估计值。 我们还获得了基于Poisson 子抽样的估算值的估算值的无条件的测试性分布。 所提议的方法需要使用一个试点估算器来纠正未加权估测算器的偏差, 我们进一步表明, 即使试点估测算器的模型的精确度是不一致的, 结果测算器仍然是正常的。

0
下载
关闭预览

相关内容

专知会员服务
145+阅读 · 2021年6月1日
区块链+数字经济发展白皮书,45页pdf
专知会员服务
130+阅读 · 2021年4月25日
区块链白皮书(2020年),60页pdf
专知会员服务
92+阅读 · 2021年1月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年11月15日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Non-Parametric Quickest Mean Change Detection
Arxiv
0+阅读 · 2021年8月25日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月22日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
145+阅读 · 2021年6月1日
区块链+数字经济发展白皮书,45页pdf
专知会员服务
130+阅读 · 2021年4月25日
区块链白皮书(2020年),60页pdf
专知会员服务
92+阅读 · 2021年1月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年11月15日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Non-Parametric Quickest Mean Change Detection
Arxiv
0+阅读 · 2021年8月25日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月22日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
Top
微信扫码咨询专知VIP会员