This paper discusses the problem of estimation and inference on the effects of time-varying treatment. We propose a method for inference on the effects treatment histories, introducing a dynamic covariate balancing method combined with penalized regression. Our approach allows for (i) treatments to be assigned based on arbitrary past information, with the propensity score being unknown; (ii) outcomes and time-varying covariates to depend on treatment trajectories; (iii) high-dimensional covariates; (iv) heterogeneity of treatment effects. We study the asymptotic properties of the estimator, and we derive the parametric convergence rate of the proposed procedure. Simulations and an empirical application illustrate the advantage of the method over state-of-the-art competitors.


翻译:本文讨论了对时间变化治疗效果的估计和推论问题。我们提出了对效果变化治疗史的推论方法,采用了动态的共变平衡法,结合惩罚性回归。我们的方法允许(一)根据任意的过去信息指定治疗方法,其倾向性分数不详;(二)结果和时间变化共变法取决于治疗轨迹;(三)高维共变体;(四)治疗效果的异质性。我们研究了测算器的无药可治特性,并得出了拟议程序的准参数趋同率。模拟和实验应用说明了该方法相对于最先进的竞争者所具有的优势。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员