Reducing the memory footprint of Machine Learning (ML) models, particularly Deep Neural Networks (DNNs), is essential to enable their deployment into resource-constrained tiny devices. However, a disadvantage of DNN models is their vulnerability to adversarial attacks, as they can be fooled by adding slight perturbations to the inputs. Therefore, the challenge is how to create accurate, robust, and tiny DNN models deployable on resource-constrained embedded devices. This paper reports the results of devising a tiny DNN model, robust to adversarial black and white box attacks, trained with an automatic quantizationaware training framework, i.e. QKeras, with deep quantization loss accounted in the learning loop, thereby making the designed DNNs more accurate for deployment on tiny devices. We investigated how QKeras and an adversarial robustness technique, Jacobian Regularization (JR), can provide a co-optimization strategy by exploiting the DNN topology and the per layer JR approach to produce robust yet tiny deeply quantized DNN models. As a result, a new DNN model implementing this cooptimization strategy was conceived, developed and tested on three datasets containing both images and audio inputs, as well as compared its performance with existing benchmarks against various white-box and black-box attacks. Experimental results demonstrated that on average our proposed DNN model resulted in 8.3% and 79.5% higher accuracy than MLCommons/Tiny benchmarks in the presence of white-box and black-box attacks on the CIFAR-10 image dataset and a subset of the Google Speech Commands audio dataset respectively. It was also 6.5% more accurate for black-box attacks on the SVHN image dataset.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员