Dynamic movement primitives (DMPs) are a flexible trajectory learning scheme widely used in motion generation of robotic systems. However, existing DMP-based methods mainly focus on simple go-to-goal tasks. Motivated to handle tasks beyond point-to-point motion planning, this work presents temporal logic guided optimization of motion primitives, namely PIBB-TL algorithm, for complex manipulation tasks with user preferences. In particular, weighted truncated linear temporal logic (wTLTL) is incorporated in the PIBB-TL algorithm, which not only enables the encoding of complex tasks that involve a sequence of logically organized action plans with user preferences, but also provides a convenient and efficient means to design the cost function. The black-box optimization is then adapted to identify optimal shape parameters of DMPs to enable motion planning of robotic systems. The effectiveness of the PIBB-TL algorithm is demonstrated via simulation and experime
翻译:动态运动原始(DMPs)是一种灵活的轨迹学习计划,广泛用于机器人系统的运动生成。但是,基于DMP的现有方法主要侧重于简单的上向目标任务。为了处理点到点运动规划之外的任务,这项工作提出了运动原始(即PIBB-TL算法)的时逻辑引导优化,以进行用户喜欢的复杂操作任务。特别是,加权短线线性线性时间逻辑(wTLTL)被纳入了PIB-TL算法,它不仅能够编码复杂的任务,涉及一系列有用户偏好的逻辑组织行动计划,而且还提供了设计成本功能的方便而有效的手段。然后,黑箱优化被调整,以确定DMPs的最佳形状参数,以便能够对机器人系统进行运动规划。PIBB-TL算法的有效性通过模拟和Experime得到证明。