In multi-agent reinforcement learning, optimal control with robustness guarantees are critical for its deployment in real world. However, existing methods face challenges related to sample complexity, training instability, potential suboptimal Nash Equilibrium convergence and non-robustness to multiple perturbations. In this paper, we propose a unified framework for learning \emph{stochastic} policies to resolve these issues. We embed cooperative MARL problems into probabilistic graphical models, from which we derive the maximum entropy (MaxEnt) objective optimal for MARL. Based on the MaxEnt framework, we propose \emph{Heterogeneous-Agent Soft Actor-Critic} (HASAC) algorithm. Theoretically, we prove the monotonic improvement and convergence to \emph{quantal response equilibrium} (QRE) properties of HASAC. Furthermore, HASAC is provably robust against a wide range of real-world uncertainties, including perturbations in rewards, environment dynamics, states, and actions. Finally, we generalize a unified template for MaxEnt algorithmic design named \emph{Maximum Entropy Heterogeneous-Agent Mirror Learning} (MEHAML), which provides any induced method with the same guarantees as HASAC. We evaluate HASAC on seven benchmarks: Bi-DexHands, Multi-Agent MuJoCo, Pursuit-Evade, StarCraft Multi-Agent Challenge, Google Research Football, Multi-Agent Particle Environment, Light Aircraft Game. Results show that HASAC consistently outperforms strong baselines in 34 out of 38 tasks, exhibiting improved training stability, better sample efficiency and sufficient exploration. The robustness of HASAC was further validated when encountering uncertainties in rewards, dynamics, states, and actions of 14 magnitudes, and real-world deployment in a multi-robot arena against these four types of uncertainties. See our page at \url{https://sites.google.com/view/meharl}.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员