The application of artificial intelligence (AI) techniques to medical imaging data has yielded promising results. As an important branch of AI pipelines in medical imaging, radiomics faces two major challenges namely reproducibility and accessibility. In this work, we introduce open-radiomics, a set of radiomics datasets, and a comprehensive radiomics pipeline that investigates the effects of radiomics feature extraction settings such as binWidth and image normalization on the reproducibility of the radiomics results performance. To make radiomics research more accessible and reproducible, we provide guidelines for building machine learning (ML) models on radiomics data, introduce Open-radiomics, an evolving collection of open-source radiomics datasets, and publish baseline models for the datasets.
翻译:人工智能(AI)技术应用于医学成像数据取得了可喜的成果:作为AI输管在医学成像中的一个重要分支,放射面临着两大挑战,即可复制性和可获取性;在这项工作中,我们引入了开放放射组、一套放射数据集和一个全面放射管,调查放射特征提取环境的影响,如宾维德和图像正常化对放射结果性能的可复制性的影响;为了使放射研究更容易获得和可复制,我们为建立放射数据机器学习模型、引入开放放射组、逐步收集开源放射数据集以及公布数据集基线模型提供了指导方针。