Group Equivariant Convolutions (GConvs) enable convolutional neural networks to be equivariant to various transformation groups, but at an additional parameter and compute cost. We investigate the filter parameters learned by GConvs and find certain conditions under which they become highly redundant. We show that GConvs can be efficiently decomposed into depthwise separable convolutions while preserving equivariance properties and demonstrate improved performance and data efficiency on two datasets. All code is publicly available at github.com/Attila94/SepGrouPy.
翻译:集团等同共变(GConvolent Convolutions)使得各种变异组的进化神经网络具有等同性,但有一个额外的参数和计算成本。我们调查GConvs所学的过滤参数,发现在一定条件下这些参数变得非常多余。我们表明,Gonvs可以有效地分解成深度可分离的变异,同时保留等异性特性,并显示两个数据集的性能和数据效率得到提高。所有代码都可以在 Guthub.com/Attila94/SepGrouPy上公开查阅。