It has been shown that equivariant convolution is very helpful for many types of computer vision tasks. Recently, the 2D filter parametrization technique plays an important role when designing equivariant convolutions. However, the current filter parametrization method still has its evident drawbacks, where the most critical one lies in the accuracy problem of filter representation. Against this issue, in this paper we modify the classical Fourier series expansion for 2D filters, and propose a new set of atomic basis functions for filter parametrization. The proposed filter parametrization method not only finely represents 2D filters with zero error when the filter is not rotated, but also substantially alleviates the fence-effect-caused quality degradation when the filter is rotated. Accordingly, we construct a new equivariant convolution method based on the proposed filter parametrization method, named F-Conv. We prove that the equivariance of the proposed F-Conv is exact in the continuous domain, which becomes approximate only after discretization. Extensive experiments show the superiority of the proposed method. Particularly, we adopt rotation equivariant convolution methods to image super-resolution task, and F-Conv evidently outperforms previous filter parametrization based method in this task, reflecting its intrinsic capability of faithfully preserving rotation symmetries in local image features.


翻译:已经显示, 等离子变异对于许多类型的计算机视觉任务非常有帮助。 最近, 2D 过滤器的平衡技术在设计等离子变异时起着重要作用。 但是, 目前过滤器的平衡法仍然有其明显的缺点, 其中最重要的缺点在于过滤器代表的准确性。 与此问题相比, 我们在本文件中修改传统的 Fourier 序列扩展为 2D 过滤器, 并提出一套新的过滤器平衡法功能。 拟议的过滤器平衡法不仅精细代表在过滤器不旋转时出现零差的 2D 过滤器, 而且还大大减轻过滤器旋转时由栅栏效应造成的质量退化。 因此, 我们根据拟议的过滤器配F- Convon 法, 构建一种新的等离子变变法。 我们证明, 拟议的F- Convorm 序列的不均在连续域内, 仅在离异化后可以比较。 广泛的实验显示了拟议方法的优越性。 特别是, 我们采用了先前的轮换制变异化法, 其真实性定型的内置的图像方法。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2021年9月3日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
8+阅读 · 2021年2月19日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员