We consider the problem of adapting a network trained on three-channel color images to a hyperspectral domain with a large number of channels. To this end, we propose domain adaptor networks that map the input to be compatible with a network trained on large-scale color image datasets such as ImageNet. Adaptors enable learning on small hyperspectral datasets where training a network from scratch may not be effective. We investigate architectures and strategies for training adaptors and evaluate them on a benchmark consisting of multiple hyperspectral datasets. We find that simple schemes such as linear projection or subset selection are often the most effective, but can lead to a loss in performance in some cases. We also propose a novel multi-view adaptor where of the inputs are combined in an intermediate layer of the network in an order invariant manner that provides further improvements. We present extensive experiments by varying the number of training examples in the benchmark to characterize the accuracy and computational trade-offs offered by these adaptors.
翻译:我们考虑将一个经过三通道颜色图像培训的网络改造成一个拥有大量频道的超光谱域的问题。 为此,我们提议建立域调控网络,绘制输入图,使之与经过大规模彩色图像数据集培训的网络兼容,例如图像网络。 调适器能够学习小型超光谱数据集,从零开始对网络进行培训可能不会有效。 我们调查了培训适应器的结构和战略,并根据一个由多个超光谱数据集组成的基准对其进行评估。 我们发现,线性投影或子集选择等简单方案往往最为有效,但在某些情况下会导致性能损失。 我们还提出了一个新的多视图调控器,将输入内容合并到网络的中间层,以不同的方式提供进一步的改进。 我们通过在基准中的不同培训实例进行广泛的实验,以描述这些适应器提供的准确性和计算取舍。