Closed-loop verification of cyber-physical systems with neural network controllers offers strong safety guarantees under certain assumptions. It is, however, difficult to determine whether these guarantees apply at run time because verification assumptions may be violated. To predict safety violations in a verified system, we propose a three-step framework for monitoring the confidence in verification assumptions. First, we represent the sufficient condition for verified safety with a propositional logical formula over assumptions. Second, we build calibrated confidence monitors that evaluate the probability that each assumption holds. Third, we obtain the confidence in the verification guarantees by composing the assumption monitors using a composition function suitable for the logical formula. Our framework provides theoretical bounds on the calibration and conservatism of compositional monitors. In two case studies, we demonstrate that the composed monitors improve over their constituents and successfully predict safety violations.


翻译:由神经网络控制器对网络物理系统进行闭路核查,在某些假设下提供了强有力的安全保障;然而,由于核查假设可能遭到违反,很难确定这些保障是否在运行时适用;为了预测核查系统中的安全违规情况,我们提议了一个三步框架,用于监测核查假设中的信任度。首先,我们代表了核查安全的充分条件,并提出了一个假设的假设逻辑公式。第二,我们建立了校准的信任监测器,评估每个假设的概率。第三,我们利用符合逻辑公式的构成功能组成假设监测器,从而获得对核查保障的信任。我们的框架为组成监测器的校准和保守提供了理论界限。在两个案例研究中,我们证明组成监测器的构成改善了其成分,并成功地预测了违反安全的情况。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
专知会员服务
43+阅读 · 2021年5月26日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
73+阅读 · 2021年5月11日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
49+阅读 · 2020年8月8日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月4日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
专知会员服务
43+阅读 · 2021年5月26日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
73+阅读 · 2021年5月11日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
49+阅读 · 2020年8月8日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员