We consider the Metropolis biased card shuffling (also called the multi-species ASEP on a finite interval or the random Metropolis scan). Its convergence to stationary was believed to exhibit a total-variation cutoff, and that was proved a few years ago by Labb\'e and Lacoin. In this paper, we prove that (for $N$ cards) the cutoff window is in the order of $N^{1/3}$, and the cutoff profile is given by the GOE Tracy-Widom distribution function. This confirms a conjecture by Bufetov and Nejjar. Our approach is different from Labb\'e-Lacoin, by comparing the card shuffling with the multi-species ASEP on $\mathbb{Z}$, and using Hecke algebra and recent ASEP shift-invariance and convergence results. Our result can also be viewed as a generalization of the Oriented Swap Process finishing time convergence of Bufetov-Gorin-Romik, which is the TASEP version (of our result).
翻译:我们认为大都会有偏向的牌摆换(也称为有限间隔或随机大都会扫描的多种AESEP ) 。 据认为,它与固定状态的趋同显示完全变换截断, 几年前Labb\'e和Lacoin就证明了这一点。 在本文中, 我们证明( $$$ cas) 的关闭窗口是按$N ⁇ 1/ 3} 的排序, 截断配置由 GOE Tracy- Widom 分配功能给出 。 这证实了Bufetov 和 Nejjjar 的预测。 我们的方法不同于Lab\'e- Lacoin, 方法是将牌摆动与多种ASP $\mathbb ⁇ 和使用 Hecke 代数 和最近 ASEP 的变换和趋同结果进行比较。 我们的结果还可以被视为Oreed Swap 进程的总体化, 结束Bufetov- Gorin- Romik 的时间趋同, 这是 TASEP 的版本 。