We consider the general problem of geometric task allocation, wherein a large, decentralised swarm of simple mobile agents must detect the locations of tasks in the plane and position themselves nearby. The tasks are represented by an a priori unknown demand profile $\Phi(x,y)$ that determines how many agents are needed in each location. The agents are autonomous, oblivious and indistinguishable, and have finite sensing range. They must configure themselves according to $\Phi$ using only local information about $\Phi$ and about the positions of nearby agents. All agents act according to the same local sensing-based rule of motion, and cannot explicitly communicate nor share information. We propose an optimization-based approach to the problem which results in attraction-repulsion dynamics. Repulsion encourages agents to spread out and explore the region so as to find the tasks, and attraction causes them to accumulate at task locations. We derive this approach via gradient descent over an appropriate ``error'' functional, and test it extensively through numerical simulations. The figures in this work are snapshots of simulations that can be viewed online at https://youtu.be/kyUiGYSaaoQ.
翻译:我们考虑几何任务分配的一般问题,即大量分散的简单移动剂必须探测飞机上的任务地点和在附近的位置。任务由先验的未知需求配置 $\ Phi(x,y) 表示,确定每个地点需要多少个代理物。代理物是自主的、盲目和不可分的,并且具有有限的感测范围。它们必须仅使用当地关于$\Phi$的信息和附近代理物的位置来配置自己。所有代理物都按照相同的基于感测的动作规则行事,不能明确沟通或分享信息。我们建议对问题采取基于优化的方法,从而导致吸引-反动动态。反演化鼓励代理物传播和探索该地区,以便找到任务,吸引它们导致在任务地点积累。我们通过“error”的适当功能的梯度下降来根据这个方法进行配置,并通过数字模拟来广泛测试。这项工作的数字是可在 https://youtu./UkyQ 上查看的模拟。