We study the computational complexity of the optimal transport problem that evaluates the Wasserstein distance between the distributions of two K-dimensional discrete random vectors. The best known algorithms for this problem run in polynomial time in the maximum of the number of atoms of the two distributions. However, if the components of either random vector are independent, then this number can be exponential in K even though the size of the problem description scales linearly with K. We prove that the described optimal transport problem is #P-hard even if all components of the first random vector are independent uniform Bernoulli random variables, while the second random vector has merely two atoms, and even if only approximate solutions are sought. We also develop a dynamic programming-type algorithm that approximates the Wasserstein distance in pseudo-polynomial time when the components of the first random vector follow arbitrary independent discrete distributions, and we identify special problem instances that can be solved exactly in strongly polynomial time.
翻译:我们研究最佳迁移问题的计算复杂性, 评估两个 K 维维的离散随机矢量分布之间的瓦塞斯坦距离。 这个问题最著名的算法在两个分布的原子数量的最大范围内, 以多元时间运行。 但是, 如果任意矢量的构成是独立的, 那么这个数字可以在 K 中指数化, 即使问题描述尺度的大小与 K 线性。 我们证明, 所描述的最佳迁移问题是 # P- 硬的, 即使第一个随机矢量的所有组成部分都是独立的单一的 Bernoulli随机变量, 而第二个随机矢量只有两个原子, 即使只寻求近似的解决办法。 我们还开发了一种动态的算法, 接近伪圆形矢量时的瓦塞尔斯坦距离, 当第一个随机矢量的成分随任意独立的离散分布而变化时, 我们发现在强烈的多元时间内可以解决的特殊问题实例 。