We prove that every 2-dimensional polygonal complex, where each polygon is given a constant curvature metric and belongs to one of finitely many isometry classes can be triangulated using only acute simplices. There is no requirement on the complex to be finite or even locally finite.
翻译:我们证明每个二维多边形综合体,即每个多边形都具有一个不变的曲线度量,并且属于数量有限的许多等量测量类别之一的每个两维多边形综合体都只能使用急性安非他明来进行三角定位。 没有要求该综合体是有限的,甚至没有当地的限制。