Given a set system $(E, \mathcal{P})$, let $\pi \in [0,1]^{\mathcal{P}}$ be a vector of requirement values on the sets and let $\rho \in [0, 1]^E$ be a vector of probability marginals with $\sum_{e \in P} \rho_e \geq \pi_P$ for all $P \in \mathcal{P}$. We study the question under which conditions the marginals $\rho$ can be decomposed into a probability distribution on the subsets of $E$ such that the resulting random set intersects each $P \in \mathcal{P}$ with probability at least $\pi_P$. Extending a result by Dahan, Amin, and Jaillet (MOR 2022) motivated by a network security game in directed acyclic graphs, we show that such a distribution exists if $\mathcal{P}$ is an abstract network and the requirements are of the form $\pi_P = 1 - \sum_{e \in P} \mu_e$ for some $\mu \in [0, 1]^E$. Our proof yields an explicit description of a feasible distribution that can be computed efficiently. As a consequence, equilibria for the security game studied by Dahan et al. can be efficiently computed even when the underlying digraph contains cycles. As a subroutine of our algorithm, we provide a combinatorial algorithm for computing shortest paths in abstract networks, answering an open question by McCormick (SODA 1996). We further show that a conservation law proposed by Dahan et al. for requirement functions in partially ordered sets can be reduced to the setting of affine requirements described above.
翻译:在设定的系统$( E, \ mathcal{ P} 美元) 情况下, $\ p 美元可以拆解成一个在游戏组中需要值的矢量。 在设定的系统$( E, $, \ mathcal{ P} 美元) 中, $( p), $ (pi) 在设置的系统 $( E, $, \ mathcal{ P} 美元) 中, $( 0. 1) mathcal { p} 美元( P} 美元) 在设置的游戏组数中, 将$( rho) 值( $, 美元) 的值( 美元) 在设置的网络中, 将概率( $( 美元) 美元) 的值( ) 美元( 美元) 美元( 美元) 的值( M) 和 Jaillet ( M) 。 我们表明, 网络的分布方式如果$( mathcal) $( $) 是抽象的 equeal rial) rial) rude real) e- a a max= a a a be be cremax__ lex a cremax a crequest legreal a a leglegreal a a a leglement a.