The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold $M$ with the Grothendieck group of constructible sheaves on $M$. When $M$ is a finite dimensional real vector space, Kashiwara-Schapira have recently introduced the convolution distance between sheaves of $k$-vector spaces on $M$. In this paper, we characterize distances on the group of constructible functions on a real finite dimensional vector space that can be controlled by the convolution distance through the sheaf-function correspondence. Our main result asserts that such distances are almost trivial: they vanish as soon as two constructible functions have the same Euler integral. We formulate consequences of our result for Topological Data Analysis: there cannot exists non-trivial additive invariants of persistence modules that are continuous for the interleaving distance.
翻译:沙发功能函文确定了与Grothendiec集团的可建树叶层的可建构功能组在实际分析的方块上的可建功能组(MM美元),其价值为$1美元。当美元是一个有限的维度实际矢量空间时,Kashiwara-Schapira最近引入了以$1美元为单位的草块-矢量空间的变异距离。在本文中,我们将可建构功能组在可建构功能组的可建构功能组的距离定位在可以通过累进距离通过累进功能通信控制的真实的有限维量矢量空间上。我们的主要结果表明,这种距离几乎微不足道:当两个可建的功能具有相同的 Euler 组成部分时,它们就会消失。我们的结果对地形数据分析产生后果: 恒度模块的不三维增异性无法持续,这些模块是连续连接距离的。