Many probabilistic inference problems such as stochastic filtering or the computation of rare event probabilities require model analysis under initial and terminal constraints. We propose a solution to this bridging problem for the widely used class of population-structured Markov jump processes. The method is based on a state-space lumping scheme that aggregates states in a grid structure. The resulting approximate bridging distribution is used to iteratively refine relevant and truncate irrelevant parts of the state-space. This way the algorithm learns a well-justified finite-state projection yielding guaranteed lower bounds for the system behavior under endpoint constraints. We demonstrate the method's applicability to a wide range of problems such as Bayesian inference and the analysis of rare events.
翻译:许多概率推论问题,如随机过滤或稀有事件概率的计算等,都需要在初始和终端限制下进行模型分析。我们为广泛使用的人口结构马可夫跳跃过程提出了解决这一桥接问题的办法。该方法基于州-空间总合计划,在网格结构中将总和起来。由此产生的近似桥接分布被用于迭接地完善和清除状态-空间的不相关部分。这样算法就学习了一种理由合理的有限状态预测,从而在终端限制下为系统行为设定了保证较低的界限。我们展示了该方法对诸如巴耶斯推论和稀有事件分析等一系列广泛问题的适用性。