Logit dynamics is a form of randomized game dynamics where players have a bias towards strategic deviations that give a higher improvement in cost. It is used extensively in practice. In congestion (or potential) games, the dynamics converges to the so-called Gibbs distribution over the set of all strategy profiles, when interpreted as a Markov chain. In general, logit dynamics might converge slowly to the Gibbs distribution, but beyond that, not much is known about their algorithmic aspects, nor that of the Gibbs distribution. In this work, we are interested in the following two questions for congestion games: i) Is there an efficient algorithm for sampling from the Gibbs distribution? ii) If yes, do there also exist natural randomized dynamics that converges quickly to the Gibbs distribution? We first study these questions in extension parallel congestion games, a well-studied special case of symmetric network congestion games. As our main result, we show that there is a simple variation on the logit dynamics (in which we in addition are allowed to randomly interchange the strategies of two players) that converges quickly to the Gibbs distribution in such games. This answers both questions above affirmatively. We also address the first question for the class of so-called capacitated $k$-uniform congestion games. To prove our results, we rely on the recent breakthrough work of Anari, Liu, Oveis-Gharan and Vinzant (2019) concerning the approximate sampling of the base of a matroid according to strongly log-concave probability distribution.
翻译:逻辑动态是一种随机的游戏动态, 游戏玩家偏向于战略偏差, 从而提高成本。 它在实践中被广泛使用 。 在拥堵( 或潜在) 游戏中, 动态会与所有战略配置集的所谓 Gibs 分布相融合, 当被解释为 Markov 链 。 一般来说, 逻辑动态会缓慢地融合到 Gibs 分布上, 但除此之外, 他们的算法方面和 Gibs 分布上并不为人知。 在这项工作中, 我们感兴趣的是以下两个问题: (一) Gibs 分布中是否有高效的取样算法? (二) 如果有的话, 是否有自然随机化的动态会很快与 Gbbs 分布相融合? 我们首先在扩展平行的游戏中研究这些问题, 一个经过仔细研究的网络连接性游戏的特殊案例。 我们的主要结果是, 日志动态动态动态存在简单的变化( 我们被允许随机地交换两个玩家的策略 ), 快速地将 Gbbbbbbbus 分布到这样的游戏的概率分布。 (a) 回答最近两个问题, 有关美元 的游戏的滚动 。 (sal la) lial lial) 的滚动结果, 我们先以正值平平的游戏的游戏的游戏的平 。