Logit dynamics is a form of randomized game dynamics where players have a bias towards strategic deviations that give a higher improvement in cost. It is used extensively in practice. In congestion (or potential) games, the dynamics converges to the so-called Gibbs distribution over the set of all strategy profiles, when interpreted as a Markov chain. In general, logit dynamics might converge slowly to the Gibbs distribution, but beyond that, not much is known about their algorithmic aspects, nor that of the Gibbs distribution. In this work, we are interested in the following two questions for congestion games: i) Is there an efficient algorithm for sampling from the Gibbs distribution? ii) If yes, do there also exist natural randomized dynamics that converges quickly to the Gibbs distribution? We first study these questions in extension parallel congestion games, a well-studied special case of symmetric network congestion games. As our main result, we show that there is a simple variation on the logit dynamics (in which we in addition are allowed to randomly interchange the strategies of two players) that converges quickly to the Gibbs distribution in such games. This answers both questions above affirmatively. We also address the first question for the class of so-called capacitated $k$-uniform congestion games. To prove our results, we rely on the recent breakthrough work of Anari, Liu, Oveis-Gharan and Vinzant (2019) concerning the approximate sampling of the base of a matroid according to strongly log-concave probability distribution.


翻译:逻辑动态是一种随机的游戏动态, 游戏玩家偏向于战略偏差, 从而提高成本。 它在实践中被广泛使用 。 在拥堵( 或潜在) 游戏中, 动态会与所有战略配置集的所谓 Gibs 分布相融合, 当被解释为 Markov 链 。 一般来说, 逻辑动态会缓慢地融合到 Gibs 分布上, 但除此之外, 他们的算法方面和 Gibs 分布上并不为人知。 在这项工作中, 我们感兴趣的是以下两个问题: (一) Gibs 分布中是否有高效的取样算法? (二) 如果有的话, 是否有自然随机化的动态会很快与 Gbbs 分布相融合? 我们首先在扩展平行的游戏中研究这些问题, 一个经过仔细研究的网络连接性游戏的特殊案例。 我们的主要结果是, 日志动态动态动态存在简单的变化( 我们被允许随机地交换两个玩家的策略 ), 快速地将 Gbbbbbbbus 分布到这样的游戏的概率分布。 (a) 回答最近两个问题, 有关美元 的游戏的滚动 。 (sal la) lial lial) 的滚动结果, 我们先以正值平平的游戏的游戏的游戏的平 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
The Cost of Simple Bidding in Combinatorial Auctions
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月13日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
The Cost of Simple Bidding in Combinatorial Auctions
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月13日
Top
微信扫码咨询专知VIP会员