This paper studies a service system in which arriving customers are provided with information about the delay they will experience. Based on this information they decide to wait for service or to leave the system. Specifically, every customer has a patience threshold and they balk if the observed delay is above the threshold. The main objective is to estimate the parameters of the customers' patience-level distribution and the corresponding potential arrival rate, using knowledge of the actual queue-length process only. The main complication, and distinguishing feature of our setup, lies in the fact that customers who decide not to join are not observed, remarkably, we manage to devise a procedure to estimate the underlying patience and arrival rate parameters. The model is a multi-server queue with a Poisson stream of customers, enabling evaluation of the corresponding likelihood function of the state-dependent effective arrival process. We establish strong consistency of the MLE and derive the asymptotic distribution of the estimation error. Several applications and extensions of the method are discussed. The performance is further assessed through a series of numerical experiments. By fitting parameters of hyperexponential and generalized-hyperexponential distributions our method provides a robust estimation framework for any continuous patience-level distribution.
翻译:本文研究一个服务系统,向抵达的客户提供有关他们将要经历的延误的信息,根据他们决定等待服务或离开系统的信息,每个客户都有耐心门槛,如果观察到的延误超过临界值,他们就会吃亏。主要目标是评估客户耐心水平分布的参数和相应的潜在抵达率,仅使用对实际排队长过程的了解,只使用实际排队长度过程的知识。我们设置的主要复杂因素和特点在于没有观察到决定不加入的客户,显然,我们设法设计出一种程序来估计基本的耐心和抵达率参数。模型是一个多服务器队列,由普瓦森的客户组成,能够评价国家有效抵达过程的相应可能性功能。我们建立高度一致的MLE,并得出估计错误的零点分布。讨论该方法的若干应用和扩展情况。通过一系列数字实验进一步评估业绩。我们的方法是,通过对超发式和超速和超超速度-超速度-超速度分布进行精确度分配,为任何持续耐心水平的分布提供了可靠的估计框架。