We introduce a computational framework for modeling and statistical inference on high-dimensional dynamic systems. Our primary motivation is the investigation of metapopulation dynamics arising from a collection of spatially distributed, interacting biological populations. To make progress on this goal, we embed it in a more general problem: inference for a collection of interacting partially observed nonlinear non-Gaussian stochastic processes. Each process in the collection is called a unit; in the case of spatiotemporal models, the units correspond to distinct spatial locations. The dynamic state for each unit may be discrete or continuous, scalar or vector valued. In metapopulation applications, the state can represent a structured population or the abundances of a collection of species at a single location. We consider models where the collection of states has a Markov property. A sequence of noisy measurements is made on each unit, resulting in a collection of time series. A model of this form is called a spatiotemporal partially observed Markov process (SpatPOMP). The R package spatPomp provides an environment for implementing SpatPOMP models, analyzing data using existing methods, and developing new inference approaches. Our presentation of spatPomp reviews various methodologies in a unifying notational framework. We demonstrate the package on a simple Gaussian system and on a nontrivial epidemiological model for measles transmission within and between cities. We show how to construct user-specified SpatPOMP models within spatPomp.
翻译:我们引入了高维动态系统模型和统计推断的计算框架。 我们的主要动机是调查空间分布、互动生物群集中产生的元人口动态。 为了在这一目标上取得进展, 我们将其嵌入一个更普遍的问题: 用于收集部分观测的非线性非伽西文随机过程。 收集中的每个过程都被称为一个单元; 在空间时空模型中, 单位对应不同的空间位置。 每个单位的动态状态可能是离散的或连续的、 卡拉或矢量的值。 在元化应用中, 国家可以代表一个结构化的人口或一个单一地点的物种群的丰度。 我们考虑收集国家有Markov属性的模型。 每个单元都进行一系列的噪音测量, 从而收集时间序列。 这个形式的模型被称为一个波地广的模型, 部分观测到不同的空间点进程( SpatPOMP 进程 )。 R 包孔波调提供一个环境来实施 SpatPOMP模型, 利用现有方法分析数据或在一个单一地点的物种群集。 我们在系统内部演示一个不易变的系统模型, 展示一个系统内部的系统模型。