Given a target distribution $\pi$ and an arbitrary Markov infinitesimal generator $L$ on a finite state space $\mathcal{X}$, we develop three structured and inter-related approaches to generate new reversiblizations from $L$. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of $\pi$-reversible generators under suitable information divergences such as $f$-divergences. Different choices of $f$ allow us to recover almost all known reversiblizations while at the same time unravel and generate new reversiblizations. Along the way, we give interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This also motivates us to introduce the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means in the second approach, and construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex $*$-conjugate in the study of $f$-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.
翻译:鉴于一个目标分布 $\ pi$ 和一个任意的 Markjual- reversial generation $L$,我们开发了三种结构化和相互关联的方法,从L$产生新的反转法。第一种方法以几何角度为依托,在适当的信息差异(如美元波动)下,将反转法作为投向$\pi-可逆发电机空间的预测。不同的选择美元使我们得以恢复几乎所有已知的逆流化,同时拆解并产生新的反转法。沿路,我们给出了三个结构化和相互关联的方法,以产生新的反转法。我们从两部分属性、平面特征、平行图法和马可夫的连锁法等引出有趣的几何结果,用以预测这些反转率的发电机在适当的信息差异(如美元波动) 。这还激励我们引入了马可夫链序列的信息中的一种概念,并赋予其存在和独特性的条件。在第一个研究的基础上,我们把双向的折变平化法 方法, 以新的平庸法的方式, 以新的平庸法的方式, 。</s>