Conventional electromyography (EMG) measures the continuous neural activity during muscle contraction, but lacks explicit quantification of the actual contraction. Mechanomyography (MMG) and accelerometers only measure body surface motion, while ultrasound, CT-scan and MRI are restricted to in-clinic snapshots. Here we propose a novel radiomyography (RMG) for continuous muscle actuation sensing that can be wearable and touchless, capturing both superficial and deep muscle groups. We verified RMG experimentally by a forearm wearable sensor for detailed hand gesture recognition. We first converted the radio sensing outputs to the time-frequency spectrogram, and then employed the vision transformer (ViT) deep learning network as the classification model, which can recognize 23 gestures with an average accuracy up to 99% on 8 subjects. By transfer learning, high adaptivity to user difference and sensor variation were achieved at an average accuracy up to 97%. We further demonstrated RMG to monitor eye and leg muscles and achieved high accuracy for eye movement and body postures tracking. RMG can be used with synchronous EMG to derive stimulation-actuation waveforms for many future applications in kinesiology, physiotherapy, rehabilitation, and human-machine interface.


翻译:常规电磁学(EMG) 测量肌肉收缩期间的连续神经活动,但缺乏对实际收缩的明确量化。 美学和加速仪只测量身体表面运动, 而超声波、 CT- 扫描和 MRI 仅限于临床切片。 我们在这里建议使用新型射电学(RMG) 进行连续肌肉振动感应, 它可以磨损和触摸不到, 捕捉表面和深肌肉组。 我们用一个前臂磨损传感器对RMG进行实验, 以便进行详细的手势识别。 我们首先将无线电感应输出转换为时频光谱学, 然后使用视力变异器(VT) 深深学习网络作为分类模型, 它可以识别23个平均精度达99%的动作, 8个科目上的平均精度达到99%。 通过传输学习, 用户差异的高适应性和感应变, 平均精度达到97% 。 我们进一步演示RMG, 以监测眼和腿肌肉, 并实现眼睛运动和身体姿势的高度精确度跟踪。 RMMG, 可用于同步- mG 今后许多的化学- 和感光学- 和感应 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员