Vulnerability detection is garnering increasing attention in software engineering, since code vulnerabilities possibly pose significant security. Recently, reusing various code pre-trained models has become common for code embedding without providing reasonable justifications in vulnerability detection. The premise for casually utilizing pre-trained models (PTMs) is that the code embeddings generated by different PTMs would generate a similar impact on the performance. Is that TRUE? To answer this important question, we systematically investigate the effects of code embedding generated by ten different code PTMs on the performance of vulnerability detection, and get the answer, i.e., that is NOT true. We observe that code embedding generated by various code PTMs can indeed influence the performance and selecting an embedding technique based on parameter scales and embedding dimension is not reliable. Our findings highlight the necessity of quantifying and evaluating the characteristics of code embedding generated by various code PTMs to understand the effects. To achieve this goal, we analyze the numerical representation and data distribution of code embedding generated by different PTMs to evaluate differences and characteristics. Based on these insights, we propose Coding-PTMs, a recommendation framework to assist engineers in selecting optimal code PTMs for their specific vulnerability detection tasks. Specifically, we define thirteen code embedding metrics across three dimensions (i.e., statistics, norm, and distribution) for constructing a specialized code PTM recommendation dataset. We then employ a Random Forest classifier to train a recommendation model and identify the optimal code PTMs from the candidate model zoo.
翻译:暂无翻译