A set $S\subseteq V$ of vertices is an offensive alliance in an undirected graph $G=(V,E)$ if each $v\in N(S)$ has at least as many neighbours in $S$ as it has neighbours (including itself) not in $S$. We study the classical and parameterized complexity of the Offensive Alliance problem, where the aim is to find a minimum size offensive alliance. Our focus here lies on natural parameter as well as parameters that measure the structural properties of the input instance. We enhance our understanding of the problem from the viewpoint of parameterized complexity by showing that (1) the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, treewidth, pathwidth, and treedepth of the input graph; we thereby resolve an open question stated by Bernhard Bliem and Stefan Woltran (2018) concerning the complexity of Offensive Alliance parameterized by treewidth, (2) unless ETH fails, Offensive Alliance problem cannot be solved in time $\mathcal{O}^{*}(2^{o(k \log k)})$ where $k$ is the solution size, (3) Offensive Alliance problem does not admit a polynomial kernel parameterized by solution size and vertex cover of the input graph. On the positive side we prove that (4) Offensive Alliance can be solved in time $\mathcal{O}^{*}(\tt{vc(G)}^{\mathcal{O}(\tt{vc(G)})})$ where $\tt{vc(G)}$ is the vertex cover number of the input graph. In terms of classical complexity, we prove that (5) Offensive Alliance problem cannot be solved in time $2^{o(n)}$ even when restricted to bipartite graphs, unless ETH fails, (6) Offensive Alliance problem cannot be solved in time $2^{o(\sqrt{n})}$ even when restricted to apex graphs, unless ETH fails. We also prove that (7) Offensive Alliance problem is NP-complete even when restricted to bipartite, chordal, split and circle graphs.


翻译:固定 $S\ subsete V$ 。 我们在这里关注的是自然参数以及测量输入实例结构属性的参数。 我们从参数化复杂度的角度加深了我们对问题的理解, 显示:(1) 问题是W[1]-hard 硬性参数, 由一系列相当限制性的结构参数组成, 例如反馈的顶点设定数、 树with、 路德维特和输入图的树深度。 我们因此解决了Bernhard Bliem和Stefan Woldran( 2018) 提出的一个问题, 这个问题涉及在树叶化限制下设定的进攻性联盟参数的复杂度, (2) 除非 EThest 失败, 在参数化复杂度复杂度的视角上, 我们从参数化的视角看, 问题是 W[1] hard 硬性参数化的大小, 例如反馈的顶点设置数、 树精度、 路德维特( kex) 等条件无法解决。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月1日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员