The multichannel rendezvous problem is a fundamental problem for neighbor discovery in many IoT applications. The existing works in the literature focus mostly on improving the worst-case performance, and the average-case performance is often not as good as that of the random algorithm. As IoT devices (users) are close to each other, their available channel sets, though they might be different, are similar. Using the locality-sensitive hashing (LSH) technique in data mining, we propose channel hopping algorithms that exploit the similarity between the two available channel sets to increase the rendezvous probability. For the synchronous setting, our algorithms have the expected time-to-rendezvous (ETTR) inversely proportional to a well-known similarity measure called the Jaccard index. For the asynchronous setting, we use dimensionality reduction to speed up the rendezvous process. Our numerical results show that our algorithms can outperform the random algorithm in terms of ETTR.
翻译:多通道会合问题是邻居在许多 IoT 应用程序中发现邻居的基本问题。 文献中的现有作品主要侧重于改善最坏的性能, 而平均的性能往往不如随机算法的好。 由于 IoT 设备( 用户) 彼此相近, 它们的可用频道装置虽然可能不同, 但彼此相似。 在数据挖掘中, 我们建议使用对位置敏感的散射技术, 利用两个可用频道的相似性来增加会合概率。 对于同步设置, 我们的算法具有预期的会合时间和时间的反比性, 与一个众所周知的类似度测量值称为 Jaccccard 索引。 对于不连续的设置, 我们使用维度减速来加速会合过程。 我们的数字结果显示, 我们的算法可以超过ETTR 的随机算法 。