Null Hypothesis Significance Testing (NHST) has long been central to the scientific project, guiding theory development and supporting evidence-based intervention and decision-making. Recent years, however, have seen growing awareness of serious problems with NHST as it is typically used, and hence to proposals to limit the use of NHST techniques, to abandon these techniques and move to alternative statistical approaches, or even to ban the use of NHST entirely. These proposals are premature, because the observed problems with NHST all arise as a consequence of a contingent and in many cases incorrect choice: that of NHST testing against point-form nulls. We show that testing against distributional, rather than point-form, nulls is better motivated mathematically and experimentally, and that the use of distributional nulls addresses many problems with the standard point-form NHST approach. We also show that use of distributional nulls allows a form of null hypothesis testing that takes into account both the statistical significance of a given result and the probability of replication of that result in a new experiment. Rather than abandoning NHST, we should use the NHST approach in its more general form, with distributional rather than point-form nulls.


翻译:“NHST”长期以来一直是科学项目的核心,指导理论发展和支持基于证据的干预和决策;然而,近年来,人们日益认识到,通常使用NHST的严重问题,因此,有人提议限制使用NHST技术,放弃这些技术,改用其他统计方法,甚至完全禁止使用NHST。这些提议还为时过早,因为NHST观察到的问题都是由应急因素和许多情况不正确的选择引起的:NHST测试对点形废品进行。我们表明,对分布式而非点形废品的测试在数学上和实验上都更有动力,而且使用分布式废品处理许多使用标准点格式NHST方法的问题。我们还表明,使用分配性废品可以进行某种形式的虚假测试,既考虑到给定结果的统计意义,又考虑到在新实验中复制结果的可能性。我们不应放弃NHST,而是应该使用NHST方法,而不是放弃NHST的数学和实验。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月2日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月28日
Arxiv
0+阅读 · 2020年11月28日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员