High-dimensional group inference is an essential part of statistical methods for analysing complex data sets, including hierarchical testing, tests of interaction, detection of heterogeneous treatment effects and inference for local heritability. Group inference in regression models can be measured with respect to a weighted quadratic functional of the regression sub-vector corresponding to the group. Asymptotically unbiased estimators of these weighted quadratic functionals are constructed and a novel procedure using these estimators for inference is proposed. We derive its asymptotic Gaussian distribution which enables the construction of asymptotically valid confidence intervals and tests which perform well in terms of length or power. The proposed test is computationally efficient even for a large group, statistically valid for any group size and achieving good power performance for testing large groups with many small regression coefficients. We apply the methodology to several interesting statistical problems and demonstrate its strength and usefulness on simulated and real data.


翻译:高维群集推断是分析复杂数据集的统计方法的一个基本部分,包括等级测试、互动测试、检测不同处理效应和当地遗传性的推论。回归模型中的群推论可以测量回归子矢量与该组相对应的回归子矢量的加权二次函数的加权二次函数。这些加权二次函数的随机公正的估测器已经构建,并提出了一个使用这些推论的估测器的新程序。我们从中得出其无症状的高斯分布,从而能够构建在长度或功率方面运行良好的无症状有效置信间隔和测试。拟议的测试在计算上是有效的,即使对于一个大组来说也是有效的,对任何组体大小都具有统计上有效,并且能够以许多小回归系数测试大组群体,从而取得良好的功率性。我们将这一方法应用于几个有趣的统计问题,并展示其在模拟和真实数据上的力量和有用性。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Random and quasi-random designs in group testing
Arxiv
0+阅读 · 2021年1月15日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员